Shallow Water Bathymetry Mapping Using Sentinel-2 and Machine Learning in Raja Ampat Coastal Waters

Authors

  • Muhammad Ichsan Universitas Dr. Soetomo Surabaya, Indonesia
  • Septa Erik Prabawa Universitas Dr. Soetomo Surabaya, Indonesia
  • Reynalda Anindia Mawarni PT. Anable Hexagon Performa, Indonesia

DOI:

https://doi.org/10.59261/jequi.v8i1.252

Keywords:

Satellite-Derived Bathymetry (SDB), sentinel-2 imagery, random forest machine learning, shallow water bathymetry, Raja Ampat waters

Abstract

This study aims to evaluate the effectiveness of Satellite-Derived Bathymetry (SDB) using Sentinel-2 imagery integrated with machine learning approaches for shallow water depth mapping in Raja Ampat, Southwest Papua a region characterized by complex seafloor topography and exceptionally clear waters. The methodology combines empirical regression models (green band power regression, blue band power regression, and Stumpf logarithmic ratio method) with Random Forest machine learning to predict bathymetry from spectral reflectance data. Field bathymetric data from fishfinder measurements were used for calibration and validation through Google Earth Engine (GEE) platform. Empirical regression results demonstrate that the green band model (B3) achieved the highest accuracy (R² = 0.7097, RMSE = 1.80–14.12 m across depth classes), followed by the blue band (R² = 0.6194) and Stumpf method (R² = 0.5693). The Random Forest model exhibited superior performance in capturing non-linear depth-reflectance relationships, particularly in complex substrate conditions. The green band model performed optimally for shallow to medium depths (0–20 m), while the Stumpf method showed greater stability at depths >20 m. These findings provide a cost-effective and scalable approach for bathymetric mapping in remote archipelagic regions, supporting marine conservation and coastal resource management in Raja Ampat and similar tropical marine ecosystems.

Downloads

Download data is not yet available.

References

-Al Najar, M., Benshila, R., El Bennioui, Y., Thoumyre, G., Almar, R., Bergsma, EWj, Delvit, J.-M., Wilson, D.G. (2022). Coastal bathymetry Estimation from Sentinel-2 Satellite Imagery: Comparing deep Learning and Physics-Based Approaches. Remote Sensing, 12(5), 1196. https://doi.org/10339/rs14051196

Bouguer, P. (1729). Essai d'optique sur la gradation de la lumière . Claude Jombert, Paris.

Bekiashev, K. A., & Serebriakov, V. V. (1981). International Hydrographic Organization (IHO). In International Marine Organizations: Essays on Structure and Activities (pp. 478-485). Dordrecht: Springer Netherlands.

Casal. T., Monteys, X., Sweeney, C., Gaulton, R. (2019). Understanding Satellite-drive Bathymetry Using Sentiel-2 Imagery and Spatial Prediction Models. Journal Of Applied Remote Sensing, 113(4), 046501. https://doi.org/10.1080/15481603.2019.1685198

Caballero, I., & Stumpf, R.P. (2020) Towards Routine Mapping of Shallow Bathymetry in Environments with Variable Turbidity: Contribution of the Sentinel-2A/B Satellites Mission. Remote Sensing , 12 Vol. (3). 451. https://doi.org/10.339/rs12030451

Ghilani, C.D. (2010). Adjustment Computations: Spatial Data Analysis . 5th Edition. John Wiley & Sons, Hoboken, New Jersey.

Hewageegana, S., & Canestrelli, A. (2022). Satellite-drive Bathymetry Using Machine earning and Optimal Sentinel-2 Imagery in South-West Florida Coastal Water. Journal of Applied Remote Sensing, 16(3), 034522. https://doi.org/10.1080/15481603.2022.2100597

Libiseller, C., Richter, R., & Schroeder M. (2022). Satellite-driven Bathymetry using Sentinel-2: A Comparative Study of Empirical Models in Coastal Water. “ Remoting Sensing, 12(9), 2085. http://doi.org/10.3390/rs.14092085

Lyzenga, D. R. (1978). Passive remote sensing techniques for mapping water depth and bottom features. Applied Optics , 17(3), 379–383. https://doi.org/10.1364/AO.17.000379

Mather, P. M. (2004). Computer Processing of Remotely-Sensed Images: An Introduction . 3rd Edition. John Wiley & Sons, Chichester.

Stumpf, R.P., Holderied, K., & Sinclair, M. (2003). Determination of water depth with high‐resolution satellite imagery over variable bottom types. Limnology and Oceanography , 48(1), 547–556. https://doi.org/10.4319/lo.2003.48.1_part_2.0547

Traganos, D., Poursanidis, D., Ahrens, B., Reinartz, P., & Chrysoulakis, N. (2018). Estimating Satellite-Derived Bathymetry (SDB) with the Google Earth Engine and Sentinel-2. Remote Sensing, 10(6), 859. https://doi.org/103390/rs10060859

Wilson, KL, Wong, MC, & Devred, E. (2022) Comparing Sentinel-2 and WorldView-3 Imagery for Coastal Bottom Habitat Mapping in Atlantic Canada. Remote Sensing, 14(5), 1254. https://doi.org/10.3390/rs14051254

Downloads

Published

2026-01-16